The two-dimensional finite bin packing problem. Part I: New lower bounds for the oriented case
نویسندگان
چکیده
The Two-Dimensional Finite Bin Packing Problem (2BP) consists of determining the minimum number of large identical rectangles, bins, that are required for allocatingwithout overlapping a given set of rectangular items. The items are allocated into a bin with their edges always parallel or orthogonal to the bin edges. The problem is strongly NP-hard and finds many practical applications. In this paper we describe new lower bounds for the 2BP where the items have a fixed orientation and we show that the new lower bounds dominate two lower bounds proposed in the literature. These lower bounds are extended in Part II (see Boschetti and Mingozzi (2002)) for a more general version of the 2BP where some items can be rotated by 90◦. Moreover, in Part II a new heuristic algorithm for solving both versions of the 2BP is presented and computational results on test problems from the literature are given in order to evaluate the effectiveness of the proposed lower bounds.
منابع مشابه
Extending Two-Dimensional Bin Packing Problem: Consideration of Priority for Items
In this paper a two-dimensional non-oriented guillotine bin packing problem is studied when items have different priorities. Our objective is to maximize the total profit which is total revenues minus costs of used bins and wasted area. A genetic algorithm is developed to solve this problem where a new coding scheme is introduced. To evaluate the performance of the proposed GA, first an upper b...
متن کاملNew Lower Bounds for the Three-dimensional Orthogonal Bin Packing Problem
In this paper, we consider the three-dimensional orthogonal bin packing problem, which is a generalization of the well-known bin packing problem. We present new lower bounds for the problem and demonstrate that they improve the best previous results. The asymptotic worst-case performance ratio of the lower bounds is also proved. In addition, we study the non-oriented model, which allows items t...
متن کاملA Comparative Study of Exact Algorithms for the Two Dimensional Strip Packing Problem
In this paper we consider a two dimensional strip packing problem. The problem consists of packing a set of rectangular items in one strip of width W and infinite height. They must be packed without overlapping, parallel to the edge of the strip and we assume that the items are oriented, i.e. they cannot be rotated. To solve this problem, we use three exact methods: a branch and bound method, a...
متن کاملA new lower bound for the non-oriented two-dimensional bin-packing problem
The two-dimensional discrete bin-packing problem (2BP ) consists in minimizing the number of identical rectangles used to pack a set of smaller rectangles. This problem is NP-complete. It occurs in industry if pieces of steel, wood, or paper have to be cut from larger rectangles. It belongs to the family of cutting and packing (C & P) problems, more precisely Two-Dimensional Single Bin Size Bin...
متن کاملA Computational Study of Lower Bounds for the Two Dimensional Bin Packing Problem
We survey lower bounds for the variant of the two-dimensional bin packing problem where items cannot be rotated. We prove that the dominance relation claimed by Carlier et al.[5] between their lower bounds and those of Boschetti and Mingozzi [1] is not valid. We analyze the performance of lower bounds from the literature and we provide the results of a computational experiment.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- 4OR
دوره 1 شماره
صفحات -
تاریخ انتشار 2003